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Abstract

Brain-Computer Interfaces (BCI ’s) enable us to infer intentional control signals from
brain activity. The Visual Speller is a BCI based on event related potentials (ERP ’s) in
the electroencephalogram, such as the P300 (a positive deflection in the EEG about 300
ms after a rarely occuring stimulus). In the classical paradigm one trial (i.e. prediction
of one symbol) consists of successive highlightings of one or more symbol(s) on a visual
grid presented to the subject. The stimulus events in which the symbol of interest
was highlighted will result in an enhanced ERP. This ERP, being stronger than the
ERP’s elicited by non-target stimulus events, can be used for prediction of the letter
the subject was focussing on using some machine learning algorithm, for example the
support vector machine. The more symbols are highlighted simultaneously the faster
the speller could potentially work. A stimulus code that uses few events per trial (and
thus shows many symbols at once) is called dense. The tradeoff against code density
is that the signal to noise ratio becomes worse with increasing stimulus frequency: the
P300 signal is reported to be strongest when the target symbol frequency is lowest. The
stimulus code in which only one symbol per stimulus event is presented, is a maximally
sparse code.
It has been proposed that high bitrates of information transfer in a visual speller can
best be achieved with sparse stimulus codes. However sparse codes have long trial
durations. In order to improve the information transfer rate, we tried to use denser
stimulus codes that present fewer stimulus events per trial. To investigate the effect
of stimulus type on classification accuracy and the interdependence of stimulus code
and type, we explored new stimulus types including ones exploiting recent findings in
neuropsychology, such as change blindness and isoluminant color motion. We show
that, using appropriate stimuli, denser codes, and hence fewer stimulus events, yield
sufficient classification accuracy to achieve competitive bitrates.
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1 Introduction

Brain-Computer interfaces (BCI ) are a promising research area. BCI ’s enable people
to communicate with a computer via brain activity. They are potentially useful for
patients suffering from amyotrophic lateral sclerosis [18], a neuronal disease that causes
motor neurons to degenerate. In severe cases, communication is practically impossible
since it relies on muscular activity, although the patients are still conscious. Brain-
computer interfaces might allow them to have a rudimentary form of communication
with the outside world.
There are two major kinds of BCI ’s: endogenous are those BCI ’s, that are self-initiated
by a specific thought (e.g. in motor imagery [6], where patients imagine the movement
of either left or right arm). In exogenous BCI ’s in contrast, an external stimulus triggers
a certain type of brain activity which can be modulated by the user’s attention. This
report focuses on the improvement of an exogenous BCI, the visual speller, that was
invented by Farewell and Donchin [4]. They used a rectangular grid of letters rows
and columns of which were highlighted successively. Synchronized with the stimulus
presentation, EEG data was recorded. When the letter which the subject was thinking
of was presented, a positive deflection in the EEG was detected 300 ms after stimulus
presentation (P300). The P300 response is ususally elicited by an oddball paradigm,
that is, when surprising changes at the target symbols occur suddenly. This event
related potential was used to determine the time of the stimulus that resulted in the
P300 and thus the letter the subject was thinking of could be retrieved. Theoretically,
one could also think of other ERP’s to be useful for classification. But since the P300 is
modulated by attention, it is among the best studied ERP’s for exogenous BCI’s. Other
ERP’s seem to be associated more with stimulus deviance, task relevance evaluation or
simply stimulus novelty. The scientific community coined terms like P300, N200, P200,
novelty P3 or just ”late positive complex” to describe those ERP’s [13], [14], [5], [4]
and to distinguish between their different functional aspects.

Concerning BCI’s, it actually does not matter, which of those components are being
used for classification. For a brain-computer interface, it is most important that there
is at least one of those components that is robust enough to distinguish, with the help
of a classifier, those stimulus epochs, where the symbol of interest has been presented
to the subject, from those other epochs, where the symbol of interest was not contained
in the stimulus.
The main aim of this work was to investigate which influence stimulus frequency and
stimulus code length have on the signal to noise ratio of ERP’s like the P300. To
increase the information transfer rate, we tried to compare the influence of the stim-
ulus type used to evoke the ERP’s on accuracy and bitrate when the trials are either
long (sparse stimulus code, low symbol frequency) or short (dense stimulus codes, high
symbol frequency). The idea is that new stimulus types, that enhance the perceptual
impact of stimulus events in the focus of attention but reduce the perceptual impact
of stimulus changes outside the focus of attention, should also result in a relative en-
hancement of the ERP’s that are elicited by target symbol changes. This enhancement
of attended vs. unattended symbols could be advantagous when using dense codes,
because distracting stimulus changes at non-target locations should have less effect not
only on the perceptual but also on the neurophysiological level and thus on the EEG.
In other words, using new types of stimuli, we hope to increase the ERP’s of attended
stimulus events relative to unattended ones.
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Figure 1: sequence of one trial, consisting of 4 subtrials (repeated trials with the same target letter); the
number of stimulus events within one subtrial was dependent on the stimulus code length

2 Methods

2.1 Stimulus preparation

We used four different stimulus types in combination with 3 different stimulus codes.
All stimuli were superimposed on a four-by-three grid of numbers, like on a telephone
keypad, see fig. 2. The stimulus type refers to the appereance of the symbols and the
change in their appearance that will elicit the ERP’s. The stimulus code refers to the
number of stimuli needed until every letter on the grid underwent the stimulus type
specific change at least once. The nomenclature for the experiments is the following:
For each symbol, the speller performed one trial. Within this trial, the speller could
use 1-4 repetitions for classification, so called subtrials. Taking more repetitions into
account, the P300 signal is increased, taking less subtrials, the bitrate is increased since
less time is needed for one symbol. So a trial consisted of 4 repetitions of the same
target letter. An example of a single trial is depicted in fig. 1.

The general structure of a trial was the following: One trial comprised 4 subtrials,
i.e. repetitions of the same target letter. The target letter on which the subjects had
to focus on was indicated by a pink square superimposed on the target symbol shown
before each trial. The subjects were instructed to concentrate on the target letter by
counting the stimulus events, i.e. the changes occurring at that particular symbol,
during the trial. This covert response was shown to be sufficient for the subjects to
concentrate on the task relevant target symbols in such a way that a P300 is generated
[4].

2.1.1 Sparse vs. dense codes

To find the best code we varied the stimulus code from a very dense to a single code
and used the row-column code for comparison. The latter is the code used in [4], it
consists of successive changes in all columns and rows of the visual grid. Since our
grid was four-by-three, we needed 7 stimulus events to show every row and column
changing at least once. So the code length of the row-column code was 7. It has been
reported that the best bitrates can be obtained with a sparser code [3], where every
symbol is changed only once in a subtrial thereby reducing the stimulus event frequency
of each symbol. This complies with the finding that the ERP strengths are inversely
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related to the frequency of the respective stimulus event [13], [14], [5]. The more often
a stimulus target is shown the noisier the corresponding ERP’s and thus the worse
becomes classification accuracy.
When each symbol was changed within a subtrial only once, we need one stimulus
event for every symbol, i.e. 12 symbols per subtrial. However, leaving aside the effect
of stimulus frequency on the ERP, the code could be theoretically reduced, in our case to
4 stimulus events. This is because we have only 12 symbols to distinguish and we have
(assuming perfect classification) 1 bit of information transferred after each stimulus,
that is, we either have a P300 (or any ERP associated with the symbol of interest) or
not. In an optimally dense code the lower bound for the code length Lcode is:

Lcode ≥ log2(Number of symbols) (1)

So if we were to ask yes-no questions to come up with the right symbol, we would
have to pose not more than 4 questions to uniquely determine which of the 12 symbols
shown was the one that the subject was focussing on, since log2(12) = 3.585. As the
number of stimulus events has to be an integer, we have to round that value up and
get 4. This would allow us to distinguish 16 symbols if we would use those 4 bits for a
binary coding scheme, but we restricted ourselves to the 12 symbols on the telephone
grid. A comparison of the different stimulus types is shown in table 2.1.1.

stimulus code dense row-column single
Lengthcode 4 7 12
(in general) ceil(log2(Number of symbols) rows + columns Number of Symbols

Of course the bitrate is also dependent on the classification accuracy, thus if
there occur disproportionately more errors with dense codes, the bitrates will not
increase. In order to improve the signal to noise ratio of the ERP’s and thus also
the accuracy of the speller, we tried new stimulus types. This we hoped would
allow us to get better accuracies that would allow us to use dense stimulus codes
without sacrificing too much accuracy.

2.1.2 Classical Stimulus

To compare our results with other publications, we used the classical Farewell
and Donchin [4] (FD) stimulus type as a control. In their paradigm, the letters
were just successively highlighted, see fig. 2b). For all stimuli, we tried to use
the same duration (250 ms) for one stimulus event, which is in the FD type
experiment one highlighting of one or more letters. A stimulus event consisted of
the change in the visual grid (at one symbol for the single code and at multiple
symbols for denser codes) plus a resting phase during which nothing was changing
in the stimulus. The interstimulus interval (ISI) was defined in [10] as the time
from stimulus onset to next stimulus onset. The symbol was highlighted for 150
ms followed by a 100 ms rest phase, this gives an ISI of 250. The ISI hence is
synonymous for stimulus event-duration. The reason why we chose such a short
interstimulus interval is that if we want to get higher bitrates, we have to reduce
the time needed for one stimulus event. Implicitly this can be done by reducing
the resting phase. However, we have to assure, that this phase is not too short for
the P300 to develop. We chose the ISI duration according to recent findings by
Kaper and Ritter [9], [10], who investigated how the ISI length affects accuracy.
Their results show, that even if the ISI was significantly shorter than 600 ms
(the interval, in which the P300 has fully developed and decayed), classification
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Figure 2: left : Change blindness stimulus (CB); between a full flip of the rectangles, a grey screen was
flashed on and off; control stimulus (Change-non-blindness, CnB) was the same but without the grey flash;
middle: Stimulus type taken from the classical Farewell and Donchin P300 speller (FD); rows and columns
were successively highlighted; right : Isoluminant color stimulus (ICM), the circles around the symbols were
coloured with faint (low luminance, low colour contrast) gratings from pink to green; during a stimulus event,
the colour swapped from green to pink and vice versa, that is a standing wave was shown

accuracies of 80% can be achieved. For some subjects they report nearly perfect
accuracies even with ISI’s of 150 ms. That is why we chose an ISI of 250 ms for
the FD stimulus type. For technical reasons (rounding inaccuracies and framerate
of the monitor) the exact stimulus event duration was 257 ms for the FD type.

2.1.3 Change Blindness

One of the new stimulus types we used was inspired by the phenomenon of change
blindness (see e.g. [20],[19],[15]). When you present in short sequence two pic-
tures that are identical except for one feature, the change in the image will be
seen immediately. However, when there is in between the presentation of the two
images a short interval with zero contrast, i.e. a grey screen, the change will not
be detected that easily. After scanning the whole picture, observers usually find
the change in spite of this effect, and after having it noticed once, they will detect
it immediately again. But the attention is not drawn to the change as in the
condition without the grey screen in between. This property of change blindness,
namely that our attention does not automatically jump to the location where
there is some change happening in the visual scene, we wanted to use to increase
the signal to noise ratio of the visual speller. What we consider as signal is the
P300 (elicited by the symbol of interest) whereas noise is basically every signal
that is not correlated with the symbol of interest. By showing the intermediate
grey screen, the observers should be made insensitive for changes outside of their
focus of attention. Our hypothesis is that this might enhance the P300 evoked by
the ”correct” stimulus. To be able to show a grey flash in between a stimulus, we
used not the FD type stimulus but a white rectangle that flipped its orientation
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by 90◦ (fig. 2, left). Between the two frames the grey screen was shown. The con-
trol condition for the change blindness (CB) stimulus was the same but the grey
screen during the flip was omitted. We will refer to this condition as change-non-
blindness (CnB). The grey flash presentation was set to 100 ms. Before the flash,
50 ms of the flip were shown and 50 ms after the grey flash, the rest phase was set
to 50 ms. This sums up to 250 ms in total. Due to technical limitations the effec-
tive stimulus event duration was 214 ms for both the CB and the CnB condition.
During the latter, the 100 ms of the flash were added to the inter-stimulus interval.

2.1.4 Isoluminant Color Motion

We also explored another stimulus based on color motion as investigated by Seif-
fert and Cavanagh [16]. They reported two types of motion perception. One,
referred to as first-order motion perception, was more sensitive to target velocity,
whereas the other, second-order motion perception, was more sensitive to target
position. While first-order motion in their experiments was based on luminance
contrast and local motion detection, second-order motion was elicited by isolumi-
nant color contrasts and required solving the correspondence problem. Since the
latter motion percept is based on position tracking and not low-level luminance
contrast analysis, we concluded that second-order motion needs attention at the
site of interest. Low-level luminance contrast detection is already performed at
early stages of the visual processing hierarchy, like retinal ganglion cells. There-
fore, distracting stimuli are present at all stages of the hierarchy. On the other
hand, attention driven detection like second-order motion should be less suscepti-
ble to distracting stimuli. Hence, as in the case of change blindness, the stimulus
of interest should be less affected by noise, i.e. changes happening at other lo-
cations than the focus of attention. Since the luminance output of each colour
Lumcol is not a linear function of the voltage V applied to each pixel, we had
to calibrate the monitor in order to have isoluminant colours. The three colours
were linearized by fitting a first order exponential function to the red, green and
blue pixels of the monitor:

Lumcol = α + βV γ (2)

We conducted a short series of psychophysical measurements before the actual
experiment during which we determined the coefficients of this function at varying
luminance levels. Subjects were instruced to assimilate the luminance of two
halves of a colored square. We fitted the function yielding Lumcol of the respective
colour using those coefficients. To maximize the effect of second order motion, we
showed a grating of isoluminant colours that drifting from left to right at about 1◦

above a fixation cross (which is about the same distance from the symbol on the
visual grid to the actual ICM stimulus, see fig. 2). Since the isoluminant colour
motion effect is most prominent at low colour contrast, we tried to make the
contrast as low as possible without losing the motion percept. While the subject
fixated at 1◦ below the moving grating, we varied the colour contrast, until it was
perceived somewhat slower. This was taken as an indication for a second-order
motion percept [16]. The contrast levels used were red=0.588-0.843, green=0.843-
0.588 and green=0.588-0.843. Colors were varied between these luminance levels
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in a circle around the symbols of the visual grid. The resulting percept was
a standing wave that changed its colour from a faint pink to green. Stimulus
frequency and colour contrast have an effect on the motion percept [17]. With
increase in temporal frequency or colour contrast, the motion percept becomes
more and more distorted by interference with other motion detection mechanisms,
thus we kept both parameters low. The colour contrast was fixed at a low level
as described earlier. The temporal frequency was set to 2 Hz, which is the value
where luminance contrast motion is least interfering with second-order motion
[17]. Stimulus event duration thus was set to 350 ms plus 150 ms rest phase and
the spatial frequency was set to 2 periods per cycle.

2.2 EEG recordings

Recordings were conducted with a QuickAmp amplifier manufactured by Brain-
Vision. The software for synchronizing the EEG with the stimuli was custom
made. We used for four of the 10 subjects the whole set of the 128 electrodes.
For the last 6 subjects we used only a subset (76) of the electrodes. We made
sure that impedance was kept below 5 KΩ before starting the session. For some
channels the impedance could not be brought underneath the threshold. Those
were removed from the recordings afterwards. Apart from the electrodes mounted
on the cap, we used one electrode to record electro-occulograms to be able to tell,
wether the EEG signal was distorted by eye movements. Subjects were sitting in
a normal office rather than a real psychophysical setup, since we wanted to ensure
our analytical methods were robust to everyday levels of noise and disturbance.

2.3 Analysis

The analysis was done in Matlab. The framework for the code I used was provided
by my supervisor. For the preprocessing, different configurations were tested, the
final ones were the following.

2.3.1 Preprocessing

After removing the high impedance channels, the EEG data was separated into
its independent components (IC’s) using the FastICA algorithm [7]. Trials that
were corrupted by artefacts were detected by visual inspection. Those trials
have been removed. Criteria for removal were either dominant activity in the
occulogram and components in the frontal regions or just noise spread across
electrodes. Then, linear trends were subtracted from the data by fitting a first
order polynomial to each component and subtracting it. The next step was to
bandpass the signal within the band of 0.1-30 Hz and downsample it according
to the Nyquist frequency of the bandpass band. The filter cutoffs were set as
hamming windows rising from 0.1 Hz to 1 and decaying from 25 to 30 Hz. Finally
the trials were split in windows of 600 ms after stimulus event onset.
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2.3.2 Classification

For classification we used linear support vector machines (SVM’s) [22]. Given
a training data set consisting of data points x ∈ RN , where RN is the input
space (in our case: N is the number of channels × number of timesamples) and
corresponding labels y ∈ {−1; 1}, where -1 refers to EEG activity during stimuli
that did not contain changes at the target symbol and 1 to EEG patterns occurring
during stimulus events that contained changes at the target symbol. Our classifier
should ideally find a mapping f(x∗) from the real numbered test data x∗ ∈ RN

onto the set of (unkown) testlabels y∗, where * indicates that the datum is taken
from the test and not the training set.

f(x) = w · x + b (3)

f(x) =

{
> 0 : stimulus changed at target symbol
< 0 : stimulus changed elsewhere

(4)

The weight vector w separates the negative from the positive data points.
The distance between the weight hyperplane and the data points nearest to it
is called the margin of the classifier. The size of the margin is often considered
as an indicator of a classifiers generalization performance. That is, the larger
the margin, the better the classifier should generalize the learned discriminatory
capabilities to new, unseen test data. In a canonical representation, maximizing
the margin is equivalent to minimizing the L2-norm of the weight vector. While
minimizing, the constraint y(w · x + b) ≥ 1 has to hold. When this constraint is
violated because the data is not separable or too many datapoints lie within the
margin, it is relaxed by introducing so called slack variables ξi each representing
the error of the corresponding training datum xi. Those ξi’s are also minimized
while they are penalised during optimization by the regularization parameter C.
So the goal of the svm training is to minimize the norm of the weight hyperplane
1
2
||w|| to get a large margin and hence good generalization performance. At the

same time we want to reduce the number of margin errors ξi, which is penalised
by C:

min
1

2
||w||+ C

∑
i

ξi (5)

s.t. yi(w · x + b) ≥ 1− ξi, ξi > 0∀i

Usually this problem is solved in the dual representation, so the goal is to find
the αi that maximize the Lagrangian:

max
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj) (6)

s.t. 0 ≤ αi ≤ C∀ i

and
m∑

i=1

αiyi = 0
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The αi that are nonzero correspond to those datapoints that are called support
vectors of the separating hyperplane. Note that in the above formulation, the
explicit representation of the weight vector is substituted by the inner products of
data points. By solving this problem we can compute the weights w =

∑
i yiαixi.

Thus we can reformulate the separating function as:

f(x) =
m∑

i=1

yiαi · (xi,xj) + b (7)

We trained the SVM’s in a leave-one-out fashion, that is, for the offline prediction
of a symbol in one trial all other trials were used as training data. Within the
training fold, we performed a 10-fold crossvalidation over a range of C-parameters
of the SVM. In each fold, we balanced the training examples by discarding ran-
domly the surplus of negative training examples from the training set. The 10
regularization hyperparameters chosen first were between 10−6 − 103 on a loga-
rithmic scale. We also tried a non-linear, Gaussian kernel with varying widths.
Since this did not significantly improve the results, we present the results of the
linear svm. After having trained the svm, we multiplied the raw svm outputs o
with the stimulus code F. The code consisted of s rows and e columns, where s
is the number of symbols on the visual grid and e the number of stimulus events.
Each entry of Fse was 1 if the sth symbol was changed in the eth stimulus event
and -1 otherwise. For each column we computed one svm output. The svm out-
puts were subtracted from the flipgrid and the columns were summed up. The
smallest value was then the symbol most similar to the one presented and was
chosen by the the speller. So

Sp = argmins(
∑
e

|Fse − oe|) (8)

Where Sp is the symbol predicted, Fse is the sth symbol in the eth stimulus
event and oe is the eth svm output value. So Fse where s is 1,...,s are all symbols
at stimulus event e, i.e. it is a vector whereas oe is just a scalar svm output.

2.4 Performance measures

To assess how good the visual speller performs, we compared the classification
accuracy and the bitrates of our BCI with other publications. The accuracy
is just the proportion of correctly predicted symbols. For the sake of compara-
bility, we used the definition of [9] to compute the bitrates of information transfer:

BR =
60

t
(log2s + pclog2pc + (1− pc)log2

(1− pc)

(s− 1)
) (9)

Where t is the time needed for one trial, s is the number of symbols on the
grid and pc is the probability of a correct trial, i.e. that the symbol predicted
by the speller was the same as the subject was (or rather should be) focussing
on. It has been argued that the definition given in [9], which is adopted from
[8], was underestimating the true bitrate if the number of symbols on the grid
is larger than 5 (see [11]). Kronegg et al. claim, that the definition given by
Nykopp [12], yielded more reliable bitrates. Nykopp computed the bitrates as the
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Figure 3: Grand average of FD (left), change blindness (middle) and change non-blindness (right) stimulus
types; trials were taken from the same code condition (single) and independent components corresponding
to occipito-parietal regions of the left hemisphere; positive trials (that contained the stimulus of interest)
are plotted red, negative trials are plotted blue; standard deviations are superimposed in respective color,
overlapping regions are purple; y-axis is dimensionless activity of the independent components

channel capacity based on the mutual information of input and output symbols
[2]. However when using this definition, our results were not directly comparable
with other publications (we achieved bitrates of more than 180 bits/min), so we
decided to show only the bitrates according the Wolpaw et al. definition.

3 Results

3.1 Averaged ERP’s

To examine the efficacy of the stimulus types used, we had a look at the aver-
aged EEG trials and the differences in brain activity comparing positive trials
and negative ones. The source of P300 signal has been reported to be located in
a centro-parietal position [13]. To find differences in brain activity corresponding
to the different stimulus types, we picked subsets of independent components of
the EEG data separated by ICA. We chose independent components, that were
useful for distinguishing positive trials from negative ones. The criteria for our
choice were the following: we looked at the weights chosen by the support vector
machines; the largest absolute values indicated the importance of the correspond-
ing features. Another criterium were the receiver-operator characteristics (ROC)
of each feature. The ROC was evaluated by looking at the area under the ROC
curve of each spatio-temporal feature. For the luminance contrast conditions we
found decisive features in the occipito-parietal region, while for the isoluminant
color motion we took the independent components originating in the central re-
gion of the skull (Cz). Although we did find some discriminative features in the
central regions for the luminance contrast motion paradigms, too, the features in
the occipito-parietal areas were more decisive for the subject shown in 3. More-
over there was a considerable intersubject variability concerning the most decisive
features. The comparisons of the different stimulus conditions are shown in fig.
3. The dashed lines show the means of positive (red) and negative (blue) trials,
the area around the lines shaded in the respective color is one standard deviation,
overlapping areas are purple.
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Figure 4: left: Average over all trials of the FD type and right: isoluminant color condition, stimulus code
was dense; positive trials are plotted blue, negative trials green; note the remarkable difference in the scale,
the isoluminant color motion (ICM) resulted in a peak activity in the plotted IC’s that was about 600 times
stronger than that of the FD type luminance color motion; origin of the component was around Cz

The isoluminant color condition is not directly comparable to the other three
conditions, because the stimulus events had twice the duration. Another differ-
ence was that the stimulus evoked aftereffects, with which not all subjects felt
comfortable. So some seemed to be rather irritated by the coloured illusions
between the rather fast stimulus presentations. Still for some subjects the isolu-
minant color condition yielded very good results in the classification performed
later on. The example shown in 4 compares FD type stimulus and the ICM stim-
ulus. Plotted are the average over all trials in the isoluminant colour condition
using a dense stimulus code at the independent components originating around
electrode position Cz. The difference in means in the ICM example is large, when
compared to the signal to noise ratio of the FD stimulus type. The P300 peak
and duration differences are clearly visible in the ICM condition. Preceding the
positive deflection of the EEG signal there is a distinct negative peak around 100
ms after the stimulus offset.

3.2 Classification Accuracy

To compare the influence of the new stimulus types and codes used on classi-
fication accuracy we examined the bitrates of the visual speller in each of the
12 experimental conditions. For some subjects the performance was very good.
But for others, the bitrates and accuracy were not comparable to the results in
recent publications, c.f. [9]. Some possible reasons for this are presented in the
discussion part. The mean accuracy was rather poor, especially in all 3 stimulus
code conditions of the classical FD type stimulus (see. fig 5 and 6).
Comparing the codes, the general assumption on ERP’s elicited by an oddball
paradigm, namely that stimulus frequency is inversely related to the quality of
the ERP, seems to hold. In the case of the dense code, the accuracy was never
perfect . This was not the case for the row column code. Still, the assumption
that the longer the stimulus code, that is the more trials for prediction are used,
the better the accuracy, does not hold for all stimulus types. The mean accuracy
had its maximum not always in the single code condition. The best stimulus type
in terms of classification accuracy was the CnB condition, throughout all stimulus
code conditions. This was surprising, because we actually just used this stimulus
type to have a control condition for the CB stimulus. Allthogh worse than its
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Figure 5: Mean classification accuracy ± one standard deviation as function of stimulus code length
(4 subtrials used for classification); not for all stimulus types accuracy increases with number of stimulus
presentations; interestingly, the single code condition resulted only in the CnB condition in the maximal
mean accuracy

control, the CB condition was still better than the classical FD type stimulus. A
comparison between the different stimulus types is plotted in fig. 6. The blue
line indicates equal performance in terms of accuracy achieved with the respective
stimulus type. The stimuli using luminance contrast motion (CB, CnB) outper-
form those that use luminance contrast flicker (FD) consistently. This can be
seen in the plots in fig. 6: most subjects have higher accuracies in the former
two than latter two paradigms and fall below the iso-accuracy line. In some cases
the CnB condition needed only one trial to predict more than 90% of the digits
correctly. Depending on the stimulus code, the number of stimulus events was 4
(dense) , 7 (RC) and 12 (single code). So assuming 250 ms for the duration of
a single event, one trial was either Ldense=1 sec, LRC=1.5 sec or Lsingle=3 sec.
The exact durations, deviate a little from these values. For the isoluminant color
condition, the trial took double the time.

3.3 Information Transfer Rate

Although prediction accuracy suffered from target frequency: even if the accuracy
in the dense code condition and the RC code was lower than in the single code,
it was still high enough to result in higher bitrates than the single condition.
The increase in accuracy with a single code was not high enough to increase the
bitrate in this condition significantly. This tendency was consistent through all
conditions. The only remarkable difference between the classical FD type stimulus
and the new stimuli we used was the fact that the bitrate of the former dropped
from the dense to RC condition and was nearly the same for the RC and single
condition, while the latter conditions (CB, CnB, isoluminant color motion) had
similar bitrates in the dense and RC condition and lower bitrates in the single code
condition (see fig. 7). For the CnB condition, we could achieve good bitrates,
comparable to results reported in recent publications, see tables 1, 2 and [23],
[24], [3], [9].
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Figure 6: Comparison of classification accuracy (1 subtrial used for classification): the straight line rep-
resents equal performance with both stimulus types; subjects below the line were better in the stimulus
conditions corresponding to the x-axis; left: x-axis shows performance in CnB condition, y-axis the perfor-
mance in the classical FD condition right: y-axis shows performance in CB condition, y-axis again the FD
condition; note that the new stimulus types using luminance contrast motion rather than flicker result in
better accuracies;

Figure 7: Mean bitrates ± one standard deviation as function of stimulus events per subtrial (1 repetition);
note that all stimulus types had higher bitrates in the dense code condition
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dense code RC code single code
FD 16.54±12.8 10.83±15.3 3.86±4.2
CB 31.37±33.3 27.94±20.6 8.90±6.7

CnB 52.35±48.0 50.55±31.0 31.37±19.3
ICM 15.49±21.8 20.16±19.3 2.47±2.9

Table 1: Mean bitrates ± standard deviation of all 12 experimental conditions using 1 subtrial per trial;
rows indicate the stimulus type, columns the stimulus code;

dense code RC code single code
FD 6.57±6.2 7.13±6.1 0.44±0.6
CB 9.68±6.1 12.67±9.5 4.24±4.0

CnB 17.48±15.2 13.41±12.0 6.81±7.2
ICM 7.07±7.1 6.60±6.8 1.10±1.4

Table 2: Mean bitrates ± standard deviation of all 12 experimental conditions using all 4 subtrials available
per trials; rows indicate the stimulus type, columns the stimulus code;

4 Discussion

Interestingly, the control condition of the change blindness paradigm yielded sig-
nificantly better results than the change blindness condition itself (fig. 5 middle
and right). This was counterintuitive considering that the CB stimulus was con-
structed such that subjects did not perceive changes going on at locations outside
of their focus of attention. There are two stimulus properties, that could po-
tentially explain that. Either the change blindness condition produces too much
sensory noise by the continously flashing screen, or the resting phase between the
stimulus events was too short in the CB condition, compared to the CnB con-
dition. The phenomenological aspects of the first argument were also reported
by the subjects themselves. The CB stimulus was the one most subjects felt
least comfortable with. This was probably due to the grey flash in between the
stimulus events. In some subjects (data not shown) we can see visually evoked
potentials in the averaged EEG, oscillating phase locked with the frequency of
the grey flashes. The other argument was that the resting phases were too short
in the CB condition. Kaper and Ritter investigated the effect of the ISI on the
classification accuracy and found that decreasing the ISI below the 600 ms border
did surprisingly not affect the classification accuracy in some subjects [9]. Con-
sidering the latency and decay time of a typical P300 signal (it only decays about
600 ms after stimulus onset), one would think, that the P300 responses would be
distorted by the previous one. Even when decreasing the ISI down to 150 ms (the
resting phase was not mentioned, so it was most probably zero), some subjects
achieved nearly perfect accuracy after only 4 trials. Appearently reducing the
ISI below the critical value of 600 ms did not decrease neither the quality of the
ERP’s nor the classification results significantly. This encouraged us to reduce
the ISI to 250 ms. This alone should not have affected our results too much.
Allthough the ISI did not change across stimulus conditions, the resting phase
did. This phase might possibly have had an influence on the quality of the P300
or other signals, that could have been used for classification. Unfortunately we

16



Figure 8: Bitrates of single subjects in bits/min using one subtrial for prediction; for many subjects,
the speller yielded very poor results; however, there was a tendency for higher bitrates in the dense code
conditions; the blue line with slope 1 indicated the performance if the experimental conditions would result
in the same performance; the new luminance motion stimuli outperform the FD type, as most of the subjects
fall underneath the line of equal performance

cannot directly compare our stimulus events with those reported in [9]. Since we
sacrificed in the CB condition some time from the ISI to the grey flash needed for
the change blindness effect, the resting phase lasted only 50 ms. This might have
been too short. The resting phase could be a parameter that affects the qualitiy
of those signals that are important for classification (P300, N200).
Leaving aside the unexpected negative effect of the CB stimulation, both stimuli
can achieve accuracies and bitrates comparable to results in recent publications.
Some subjects needed only one second (in the dense code condition) to transmit
the correct symbol. In those subjects that had a classification accuracy above
80%, we looked at the average EEG and found P300 activity in most conditions.
An example is shown in fig. 3b). However, intersubject variability was very large,
in the classification results as well as in the features used for classification.
Surprisingly the CB/CnB stimuli outperformed the classical FD stimulus consis-
tently. The superiority of the CnB/CB stimulus type compared to the classical
luminance flicker paradigm of the FD speller cannot be generalized but must be
rather due to our specific setup. The bitrates and accuracies achieved with the
CB/CnB stimuli are comparable to other publications, however the FD speller
results are not. The main difference between our stimuli and those of other pub-
lications that could have led to this outcome is the size of the symbols on the
grid. In our stimuli, they were comparatively small (≈ 1.5◦ of visual angle).
Another speculation, allthough not explaining the huge difference compared to
state-of-the-art visual spellers working with the FD speller paradigm as in [9],
is that the difference could be due to the motion energy contained in the new
luminance contrast motion stimuli. Assuming a low level motion detection mech-
anism consisting of spatio-temporal receptive fields (e.g. [1], [21]) reflected in the
EEG, the difference in activity comparing the flicker and motion stimuli would
correspond to the differences in motion energy: motion contains more motion
energy than flicker stimuli. This explanation can also partially account for the
surprisingly low accuracy of the FD stimulus types compared with other publica-
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tions: changes happening at large symbols should result in more motion energy
than changes happening at smaller ones like the ones we used.
Although the classification performance was better in the CnB condition than in
the CB condition, both conditions resulted in similar relations between bitrate
and target frequency: the bitrate decreased with number of stimulus presenta-
tions. The more stimulus events per trial, the better was the signal to noise ratio,
but the worse became the bitrate. The former statement was in perfect agree-
ment with recent results in the literature, although the effect was not as strong
in our data as in other publications. The latter however was not. One important
aspect concerning the bitrates is, that there are only few publications that tried
to compare dense codes with single or in general sparser codes. In particular,
codes denser than the classical row-column code, have been rather neglected in
the literature. Moreover, the direct comparison of row-column codes and sparse
codes is not always possible, because the different codes have not been presented
under the exact same conditions. For instance Guan et al. varied the ISI’s such
that each trial had the same duration in the two code conditions they tested [3].
The two stimulus codes could not be directly compared in those experiments, be-
cause the experimental conditions changed with the code. In addition to that the
scientific community has not yet agreed on a formula to compute the bitrates of
a BCI (see [11]), so classification accuracy is still the most common benchmark.
This is sensible from the patients point of view, because for them, incorrectly
spelled symbols are much worse than being a few seconds slower or not. Our
results show, that sparser codes indeed improve accuracy but not to an extent
that denser codes could not be considered as feasable alternative.
In other words, even if the dense code condition was not as accurate as the RC
condition (that holds true for the single code condition, too, see fig. 5) and more
errors occurred, the bitrates were still higher in that condition.

5 Conclusion

The assumption ”the lower the target stimulus frequency, the better the accuracy”
was confirmed for two stimulus types (CB/CnB) and for the other two at least
partially. However, when using dense stimulus codes, the signal to noise ratio of
the relevant ERP’s (fig. 5, 6, 3) is at least good enough to yield higher bitrates
compared with sparser code conditions, when the faster presentation time is taken
into account.
Of course even if the bitrates are higher in the dense code condition, our hy-
pothesis that enhancing the perceptual impact of a target stimulus (relative to
non-targets) does automatically increase the signal to noise ratio of the associ-
ated ERP was not supported. In particular the control condition (CnB) was
better compared to the CB condition. We attributed this superiority mainly to
the considerably longer resting phase in the CnB condition and the low signal
to noise ratio in the CB condition due to the continously flashing grey screen.
Another discouragement was the low mean accuracy and bitrates compared to
other publications under the FD condition. This could also be explained by the
short resting phases and, in addition to that, the small size of the symbols used.
Reducing the resting phase or in general the ISI is a very efficient means to de-
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crease the trial duration and thus also the total bitrate. On the other hand we
found that there is a limit value for the resting phase: when reducing the resting
phase down to 50 ms as in the case of the CB condition, we achieved only very
poor results (5). Future experiments will have to confirm whether and to what
an extent these variables, the resting phase or ISI, influence the quality of the
EEG signal.
To use the new stimuli and especially dense codes in an online BCI, we would
have to improve the classification accuracy of our speller. Given that we could use
for a 36 letter grid instead of 36 stimulus events (in the commonly assumed best
single code condition) only log2(36) ≈ 6 stimulus events (using a dense code in
combination with one of our new stimulus types), the increase in bitrate for a al-
phanumeric grid would be even higher. In addition to that, we could incorporate
some more stimulus events and would have enough codewords left when using a
dense code to incorporate some error correction. Additionally, we could come up
with a more intelligent design of the flipgrid. Symbols that are very often used in
spellings or that are very often cooccurring should be placed far apart from each
other to decrease distractive stimulus events in the focus of attention. This is the
goal of upcoming experiments.
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